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The nonisothermal  flow of an anomalously viscous liquid in the channel of a screw extruder  is 
analyzed with allowance for the influence of the side walls. A compar ison with experimental  
data is given. 

A ra ther  large number of repor t s  have been devoted to the investigation of the laws of motion and heat 
exchange in p roces se s  of polymer  t rea tment  using screw extruders .  A survey of much of the work  done by 
the s tar t  of the 1970s is given in [1, 2]. Questions connected with the motion of mater ia l  in a liquid state in a 
screw have been studied the most  fully up to the present  [1-8]. Among various methods used in pract ical  
engineering to calculate the main charac te r i s t i c s  of screw ex t ruders ,  the mos t  accura te  and widely used is 
the method based on a model which rea l izes  the conditions of complex shear  [2-4, 6, 8]. 

In such a s tatement  of the problem (not to mention even s impler  ones),  however ,  one is unable to allow 
for a number of important  fac tors  which can have an essent ial  effect on the calculation of the flow cha rac t e r i s -  
tics. The point is the ignoring of the influence of the side walls of the channel and the anomaly of the viscosi ty  
(except for the power law) in the solution of the problem. But the influence of the walls in the flow of non- 
Newtonian liquids is e i ther  neglected ent irely [3, 4], assuming in advance a large ratio W/H, or ,  as is sug-  
gested in [2], it is allowed for through a form factor  F d [5], taken as equal to the value obtained in the in tegra-  
tion of the equations of motion of Newtonian liquids. The lat ter  assumption is obviously co r r ec t  only for m a -  
ter ia ls  whose rheological  proper t ies  differ insignificantly f rom those of Newtonian mete r ia l s  [1]. 

1. Let  us consider  the steady flow of an incompress ib le  anomalously viscous liquid, assuming that the 
dimensions of the channel are  constant along the length. Moreover ,  we will assume that the height of the 
channel is far  less  than its radius ,  the curvature  of the channel can be neglected, and the gap between the 
f rame and the screw ribs is negligibly small.  Then the flow in a screw extruder  (Fig. la) can be represented  
as flow in a rectangular  channel (Fig. lb),  which develops as a consequence of the motion of the upper plate 
and the action of counterpressure .  In this case the motion and heat exchange of the mater ia l  a re  descr ibed 
by a sys tem of differential equations including the equations of motion,  incompressibi l i ty ,  and energy and the 
physical  equations. This sys tem must  be closed by boundary conditions and by additional equations for the 
thermophysical  proper t ies .  In the Car tes ian coordinate sys tem the above-indicated equations have the form 
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In the general  case the solution of this sys tem presents  a complicated problem,  even when modern ca l -  
culating methods and computers  are  used. It can be simplified considerably,  however,  if one assumes  that 
the tempera ture  is the same at all points of a channel c ross  section: 
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Fig. i. Schematic drawing of a screw extruder (a) 
and its plane model (b). 

aT o, aT = 0 (5) 
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In this case ,  as shown in [2, 8], the velocity fields do not va ry  along the longitudinal axis of the channel, 
i .e. ,  in Eqs. (1-4) the derivat ives  of the velocity with respec t  to the z coordinate are  equal to zero.  The in- 
fluence of the tempera ture  is reduced to var ia t ion only in the s t r e s s e s ,  and hence in the p r e s s u r e  and power. 
And this influence can be es t imated through the function f(T) of the tempera ture  dependence of the v iscos i ty ,  
which is equal to one for  i so thermal  flow. 

Thus,  the solution of the problem of nonisothermal  flow is reduced to the solution of two success ive  
problems.  F i r s t ,  assigning the determining value of the bulk flow rate Q and assuming that the geometr ical  
dimensions of the ex t ruder ,  the rotation velocity of the screw,  and the rheological  proper t ies  of the mater ia l  
a re  known, f rom the solution of the equations (1), (2), and (4) for i sothermal  flow we find the velocity fields 
corresponding to the given value of Q. Then f rom the known veloci t ies ,  thermophysical  p rope r t i e s ,  and bound- 
ary  conditions of heat  exchange we determine the tempera ture  distribution along the length of the channel f rom 
the energy equation, and knowing this,  we calculate the s t r e s s e s ,  p r e s s u r e ,  and power. 

2. Let  us briefly discuss  the solution of the problem of isothermal  flow. Since in actual screws the 
length of the channel is far  grea ter  than its other two dimensions,  the p r e s s u r e  along the longitudinal z axis 
var ies  by a l inear  law, i .e . ,  the p r e s s u r e  gradient  is dP/dz = As = const. Then it is obvious that the ass ign-  
ment of the flow rate Q is identical to the ass ignment  of the determining value of A s. 

To solve the sys tem of equations descr ib ing the two-dimensional  flow in a screw,  we used the f ini te-dif-  
ference method (grid method),  which is well recommended in fluid mechanics .  Without dwelling in detail on 
this method, a descr ipt ion of which can be found in many repor ts  (a review is given in [9]), we only note that 
the equations of motion were  f i r s t  t r ans formed  and writ ten through the s t r eam function, the vor t ic i ty ,  and the 
longitudinal velocity [9, 10]. These t ransformat ions  and the introduction of the s t r eam function and the vor t i -  
city made it possible to eliminate the p r e s s u r e  f rom the equations of motion and to automatical ly satisfy the 

condition of incompressibi l i ty .  

The boundary values for the new var iables  were determined f rom the condition of adhesion of the liquid 
to the impermeable  walls [9]. To solve the sys tem of a lgebraic  equations obtained through the replacement  of 
the differential  equations by their  f ini te-difference analogs we used the Gauss -Se ide l  method of success ive  
approximations.  The calculations were  pe r fo rmed  on a B~SM-6 computer .  

The effect iveness of the use of the f ini te-difference method to solve such problems and the adequacy of 
the model of i so thermal  extrusion descr ibed above to the actual p rocess  are  discussed in [7]. 

To es t imate  the influence of the inert ial  t e rms  and the side ribs on the velocity components of a liquid 
whose viscos i ty  is descr ibed by a power law of flow 

we car r ied  out a calculation with the following values of the pa r ame te r s :  H = 0~ m; W = 0.023 m; L = 0.22 
m; q~ = 23.5~ v 0 = 12.8 m/sec ;  n = 0.5; ~0 = 94 N �9 sec-~ A 1 = 6" 105 N/m3; Re = 71. The Reynolds number 

is computed for  the point located at the center  of the upper plate. 
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Fig. 2. Prof i les  of the dimensionless  veloci t ies  Wy and Wz in different channel c ross  sections;  
Re = 71; solid curves) ver t ica l  Wy; dashed curves) t r ansve r se  Wx; 1) y/H = 0.25; 2) 0.5; 3) 0.75. 

Fig. 3. Distribution of dimensionless  profi le of longitudinal Velocity w z over  channel c ross  s e c -  
tion; Re = 71 (x, y,  m). 

A uniform 17 x 17 grid was used in the calculation. The time for  solving the problem was 18.6 min. The 
resul ts  of the calculation are  presented in Figs.  2 and 3 in the form of the distr ibution over the channel c ross  
section of the dimensionless veloci t ies  Wx, Wy, and Wz, equal to the rat ios  of the corresponding components of 
the true velocit ies to the velocity v 0. 

The velocity profi les  are  a symmet r i ca l  relat ive to the ver t ica l  plane x = W/2 (Figs. 2 and 3), with this 
a symmet ry  increas ing with an increase  in the Reynolds number ,  as the calculation showed. For  large num- 
bers  an interest ing effect is revealed,  consist ing in the fact  that when a certain value of the counteract ing p r e s -  
sure gradient A 1 is reached a region of negative velocit ies Wz (Fig. 3) is crea ted  only in one lower corner ,  and 
not in two corners  at once,  as occurs  for  small  Re [10]. With an increase  in A 1 such a region also develops in 
the other lower corner .  With a fur ther  increase  in A 1 this region gradually covers  the entire lower par t  of the 
channel. 

The presence  of inflection points on the velocity profi les together  with the a symmet ry  of the velocity 
field can, under certain conditions, lead to the appearance of a flow instabili ty,  but in the presen t  repor t  we 
do not consider  questions of hydrodynamic instabili ty,  the investigation of which is a complicated and inde- 
pendent problem. 

The re tarding action of the walls on the velocity is seen f rom the graphs presented.  On the whole it 
agrees  with the concepts existing in the l i te ra ture  [1, 2]. It should be noted, however ,  that the ver t ica l  ve lo-  
city component, which is usually neglected in calculations,  becomes comparable with the other  two veloci t ies  
for small  W/H, not only near  the walls but also at a considerable distance f rom them (Fig. 2). There fo re ,  for 
screws having small  rat ios  W/H the velocity Wy must  be allowed for in calculations. 

3. After  the determination of the velocity field we consider the energy equation. Neglecting the heat  con- 
duction along the longitudinal axis of the channel and allowing for  the condition (5), we obtain the energy equa-  
tion in the form 

ozOT ( _ ~  ) --2-12 (7) ~ c v ,  ~ -  = f ( 7 ) n  . 

Assuming that the heat  exchange with the surrounding medium takes place by Newtonts law, after  inte-  
gration we obtain the following t ranscendental  equation for the determination of the tempera ture  at any point of 
the channel: 

f (T )  I = ~ , ~ V ( V , - - T ) . : - ~ 2 W ( r 2 - - V )  pq  

To qf (T) 

(8) 

The amount of heat re leased in the i sothermal  flow in a section of the channel with a length dz is 
~H 
"~ ' I  ') 12 

0 O  

(9) 
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Fig .  4. Dependence of r e q u i r e d  power  
and of p r e s s u r e  and t e m p e r a t u r e  
d rops  on l iquid flew r a t e :  so l id  curves)  
ca lcula t ion;  dashed curves)  m e a s u r e -  
ment;  N, kW; AP ,  N/m2; AT,  *K; Q, 
m3/sec. 

The power  r e q u i r e d  by an e x t r u d e r  and the p r e s s u r e  drop  in the s c rew channel a r e  de t e rmined  f rom the 
following equations: 

$ IV 

0 . 0 

= Jo oz ox + t (T) - -  pS + Oy / 

f l o w  ~ 

In these e x p r e s s i o n s  the s h e a r  s t r e s s e s  and ve loc i t i e s  a r e  ca lcu la ted  f rom the equations for  i s o t h e r m a l  
In the case  of slow flow Eq. (11) takes  the s imple  fo rm 

S 

AP = A, S I (T)dz. (12) 
0 

4. In o r d e r  to c l a r i fy  the su i tab i l i ty  of the p roposed  ex t rus ion  model  for  the desc r ip t ion  of a r e a l  p r o c e s s  
the r e s u l t s  of the ca lcula t ion  we re  compared  with expe r imen ta l  data obtained with flow in a s c r e w - t y p e  pump 
of a solution of a c r y l o n l t r l l e  copo lymer  (21% concentrat ion)  in d imethyl  fo rmamide .  The expe r imen t s  were  
conducted under  condit ions c lose  to an ad iaba t i c  mode (% = % = 0). The d imens ions  of the sc rew w e r e  the same  
as  in the example  cons ide red  above. The v i s cos i t y  of the solut ion was d e s c r i b e d  by a power  law (6) of flow, 
while the t e m p e r a t u r e  dependences  of the spec i f ic  hea t  and v i s cos i t y  w e r e  d e s c r i b e d  by the fol lowing functions:  

C ( T ) = C  o + C , ( T -  Th); [ ( T ) = e x p [ - - [ J ( T - - T n ) ] .  

The values  of the r ema in ing  p a r a m e t e r s  a r e  v 0 = 6. 28 m/ see ;  n = 0.5;  110 = 280 N �9 sec-~ p = 980 kg/m3; 
T H = 273~ T O = 293"K; C O = 1800 J /kg-  deg; C 1 = 8.4 J /kg-deg2; /3  = 0.015 deg - l .  

Curves  of the r e q u i r e d  power  and the t e m p e r a t u r e  and p r e s s u r e  d rops  as  functions of the bulk flow ra t e  
a r e  p r e sen t ed  in Fig .  4. It should be noted f i r s t  of a l l  that  a l l  the curves  have the same  qual i ta t ive  c h a r a c t e r .  
The s l ight  exces s  of the t heo re t i ca l  over  the e xpe r i m e n t a l  hea t ing  can be expla ined by the assumpt ion  that  the 
p r o c e s s  is  ad iabat ic .  The max imum e r r o r  in the t e m p e r a t u r e  d rop  does not exceed 12% in the inves t iga ted  
range of flow r a t e s .  With an i n c r e a s e  in the flow r a t e  the ca lcu la ted  curves  of the power  and the t e m p e r a t u r e  
drop have a tendency to approach  the expe r ime n t a l  cu rves ,  e s p e c i a l l y  the curves  of the t e m p e r a t u r e  drop.  The 
min imum e r r o r s  a r e  9 to 6%, r e spec t i ve ly .  

The exces s  of the ca lcula ted  over  the expe r imen ta l  p r e s s u r e  drop  (the maximum is  40% and the min imum 
is  3~0) is  evident ly  connected with l iquid leaks  in the gap between the sc rew r i b s  and the f r ame .  The flow of 
the l e aks ,  which is not taken into account  in the model  used ,  l eads  to a p r e s s u r e  d e c r e a s e  at  the exi t  f rom the 
screw.  A p a r t i c u l a r l y  s t rong  d e c r e a s e  is obse rved  in modes  close to the mode of a c losed  exi t  [4]. And since 
the expe r imen t s  were  conducted in jus t  such modes  (the m e a s u r e d  flow r a t e  was only a few pe rcen t  of the 

1346 



m a x i m u m  flow rate) ,  one can repor t  that a f te r  the inflection point on the '_XP-Q curve the d i sag reemen t  be -  
tween the theore t ica l  and expe r imen ta l  data will be considerably  s m a l l e r  as the flow ra te  i n c r e a s e s .  

x,  y,  z,  xi ,  xj 
H 
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L and S 
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T 
N 
Tij 
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~1 and a 2 
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N O T A T I O N  

a re  Car tes ian  coordinates ;  
is the height of channel; 
is the width of channel; 
a re  the lengths of the s c r ew  and of the channel; 
is the pitch of the hel ical  line; 
is the veloci ty of the upper  plate;  i, j = 1, 2, 3; 
a re  the d imens ion less  ve loci t ies  of the liquid; 
a re  the t rue veloci t ies  of liquid pa r t i c l e s ;  
is the p r e s s u r e  gradient;  
is the bulk flow rate  of the product;  
is the p r e s s u r e ;  
is the t empe ra tu r e ;  
is the power;  
a r e  the components  of the s t r e s s  t enso r ;  
is the second (quadratic) invar iant  o~ the tensor  of deformat ion  veloci t ies ;  
a re  the specif ic  heat  and the rma l  conductivity of the liquid; 
is the density of the liquid; 
a re  the hea t -exchange  coeff icients;  
a re  the the rmophys ica l  constants ;  
a re  theologica l  constants ;  
is the liquid t e m p e r a t u r e  at the s c r ew  inlet; 
is the Reynolds number .  
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